Comprehensive

REVIEWS

in Food Science and Food Safety

Prospective Applications of Cold Plasma for
Processing Poultry Products: Benefits, Effects
on Quality Attributes, and Limitations

Mohsen Gavahian “", Yan-Hwa Chu, and Cheorun Jo

Abstract:

Eliminating the pathogens from the chicken egg and meat is of supreme value for food scientists. In this regard,

researchers have explored the potential applications of cold plasma, as a promising technique, to increase the profitability of

poultry farming and safety of the poultry products. In the present study, an overview of the conducted research on plasma

treatment of poultry products is presented to highlight the potential benefits of this emerging technology for the food

and poultry industries. The potential negative effects of plasma treatment on the quality attributes of the product are also

discussed. Moreover, the limitations of this technology and considerations for its commercial applications are illustrated.

Furthermore, the needs for future research in this area of science are pointed out. Several studies have confirmed the
applicability of cold plasma for egg and chicken decontamination. Considering the number of the recently conducted

research and on-going advances in plasma science, this technique may assist food producers in enhancing the poultry

product safety in the near future.
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Introduction

The poultry industry is one of the most important fairs of the
agri-food industry. The poultry products, such as chicken meat and
egg, provide a significant portion of the human diet. The poultry
meat is currently the most consumed meat in many regions of the
world (OECD, 2018). The production and consumption of poul-
try meat are predicted to increase in the next decades (OECD,
2018) due to the affordable price, high nutritional quality, and
limited cultural and religious restrictions on the consumption of
these products. In addition, avian eggs are valuable sources of pro-
teins and nutritional components. Recently, avian eggs have been
recognized as a source of several valuable bioactive compounds
for the biotechnology, medical, pharmaceutical, and food indus-
tries (Lesnierowski & Stangierski, 2018). Therefore, the poultry
industry plays a crucial role in the provision of a sustainable food
supply.

However, poultry products have limited shelf-life and are po-
tential sources of concerning pathogens (for example, Salmonella).
Therefore, the food industry employed several approaches to en-
hance the safety and shelf-life of these products. Conventional
preservation techniques for poultry products include freezing, re-
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frigeration, dehydration, thermal treatments, food additives incor-
poration, packaging, and combinations of these methods, that is,
hurdle technology (Barbosa-Cinovas, Medina-Meza, Candogan,
& Bermudez-Aguirre, 2014). However, several drawbacks are as-
sociated with these approaches including limited shelf-life ex-
tension and quality deterioration (for example, lipid oxidation
and undesirable changes in color and texture). It is generally be-
lieved that synthetic food additives (for example, antimicrobial
agents) may inversely affect consumer health (Casani, Rouhany,
& Kneochel, 2005). Besides, the chemical preservation of poultry
products is limited in many regions of the world. Therefore, the
poultry industry has assessed the emerging techniques that can
enhance the safety of products to meet the consumer demands
for the safe, high quality, and sustainable food supply. Although
several emerging technologies have greatly improved the safety
of poultry products (Pattison, McMullin, Bradbury, & Alexander,
2008), cold plasma is still in its infancy and researchers are trying
to explore its potential benefits for the poultry industry.

Cold plasma, as the fourth state of the matter, consists of charged
particles, reactive chemicals, and light energy. It was first used in
electronics and polymer industries (Cheng et al., 2014; Chizoba
Ekezie, Sun, & Cheng, 2017) for structural modifications. The
packaging industry has also used plasma for modification of poly-
mer structure to achieve desirable properties of packaging mate-
rials (Pankaj et al., 2014). Recently, the findings of many studies
imply that nonthermal plasma technology can be considered a
profitable tool in agri-food industries such as the poultry industry.
Researchers around the world showed that this emerging technol-
ogy can be used for enhancing the microbiological safety of various
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products (Aly, 2013; Apostol, Georgescu, Vatuiu, & Gaceu, 2015;
Dirks et al., 2012; Georgescu, Nicolae, Apostol, & Gherendi,
2017; Lee et al., 2011, 2012, 2016; Ragni et al., 2010; Rossow,
Ludewig, & Braun, 2018; Wang, Zhuang, Lawrence, & Zhang.,
2018; Yong et al., 2014) and increasing the production rates in the
farm (Wang et al., 2016; Zhang et al., 2017; Zhang, Do, et al.,
2018; Zhang, Huynh, et al., 2018; Zhang, Wang, et al., 2018).

The decontamination of poultry products is one of the most
important applications of cold plasma. Poultry products are usu-
ally contaminated with several foodborne pathogens including
Salmonella and Campylobacter species (Galis et al., 2013). These
pathogens are usually carried asymptomatically in the gastroin-
testinal tract of birds that can be transferred to their meat in the
slaughtering process. Similarly, avian eggs can be contaminated
with these microorganisms as they shed in the feces in large quan-
tities. It was estimated that, just in the United States, more than
70 million people experienced food poisoning that, many of them,
were probably related to the consumption of poultry products
(Doyle & Erickson, 2006). Unfortunately, recognizing foodborne
pathogens is challenging for the farmers as infected chickens pos-
sess slight or no symptom regarding their appearance and their
production rate. It was reported that the consumption of chick-
ens (Kimura et al., 2004) and eggs (Glynn et al., 2004) are the
principal risk factors for sporadic S. enterica and S. Typhimurium
infections, respectively. An epidemiologic survey in the United
Kingdom revealed that poultry products are the main risk factor
for Campylobacter infection (Rodrigues et al., 2001). Therefore,
it is important to reduce the risk of these outbreaks by disin-
fecting poultry products. The conventional disinfection methods
suffer from a number of drawbacks (Doyle & Erickson, 2006). For
example, chemical preservatives introduce harmful compounds
into the food products that are associated with health problems
(Carocho, Morales, & Ferreira, 2015). It was reported that con-
sumers are reluctant to use the food products that are prepared
with chemical preservatives (Lorenzo et al., 2018). Natural preser-
vatives may negatively affect the sensory properties of products
(Gavahian, Hashemi, Mousavi Khaneghah, & Mazaheri Tehrani,
2013; Lorenzo et al., 2018). Therefore, the decontamination ef-
fects of emerging technologies on poultry products have recently
attracted the attention of researchers all over the world.

The microbicidal effects of nonthermal plasma on several food
products have been already confirmed through previously con-
ducted studies (Coutinho et al., 2018; Dasan, Yildirim, & Boyaci,
2018; Gavahian & Mousavi Khaneghah, 2019; Lopes et al., 2018;
Misra & Jo, 2017; Olatunde & Benjakul, 2018; Zhang et al., 2019).
Researchers showed that this process can inactivate a wide range
of troublesome microorganisms, including biofilms (Jahid, Han,
& Ha, 2014; Niemira, Boyd, & Sites, 2014), spores (Lopes, Mota,
Gomes, Delgadillo, & Saraiva, 2018; Patil et al., 2014), and viruses
(Bae, Park, Choe, & Ha., 2015; Puligundla & Mok, 2016). How-
ever, the efficacy of cold plasma for treatment of various poultry
products should be discussed to promote its industrial application.
This review, for the first time, provides an overview on the poten-
tial applications of nonthermal plasma technology in the poultry
industry, highlights its stunning benefits for farm production and
product safety enhancement, discusses the limitations of this tech-
nique, and suggests the considerations for its industrial adoption.

To collect the appropriate references for the present study, a
comprehensive literature search was performed on previously pub-
lished data through scientific databases (for example, “Scopus,”
“Web of Science,” “PubMed,” “SciELO,” and “ScienceDirect”).
No restriction was applied with regard to the research period.
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In this regard, combinations of relevant terms, including “cold
plasma” AND “nonthermal plasma” AND “plasma” AND “arc
plasma” AND “dielectric barrier discharge” AND “corona” AND
“glow” AND “poultry” AND “avian” AND “chicken” AND
“rooster” AND “duck” AND “geese” AND “poultry farming”
AND “egg” AND “cooked egg” AND “yolk” AND “egg white”
AND “albumen” AND “glair” AND “eggshell” AND “chicken”
AND “chicken meat” AND “chicken skin” AND “egg decon-
tamination” AND “meat decontamination” AND “egg quality”
AND “meat quality” were used to collect the potential appro-
priate references. The first author of the present work reviewed
the title and the summary of the resulted materials to exclude
the documents that did not comply with the inclusion criteria.
The elimination process was then continued through reading the
full text of the chosen articles from the previous step to verify
the suitability of these documents based on the inclusion crite-
ria. The second author of the present study double checked this
process. In case of discrepancy, the authors asked the opinion of
the last author of the present work. Besides, the references of the
retrieved studies were analyzed to find further relevant sources.
Moreover, the articles that cited the retrieved surveys (according
to search engines such as “Google Scholar”) were reviewed to find
potential appropriate references. Afterward, Mendeley reference
manager software (Elsevier, the Netherlands) was used to orga-
nize and to de-duplicate the selected papers. In the present study,
the inclusion criteria were original research/scientific studies that
were published in English with an accessible full-text that investi-
gated the applicability of cold plasma in the poultry industry.

Nonthermal Plasma and Its Generation

The term “plasma” generally refers to macroscopically neutral
mixtures of reactive species, including charged molecules, ions,
free electrons, radicals, photons, and ionized molecules or atoms,
which exhibit collective behavior due to the long-range Coulomb
forces (Bittencourt, 2013). The detailed information about the
fundamentals of plasma and the mechanisms involved in plasma
generation can be found in the literature (Bardos & Bardnkova,
2010; Bittencourt, 2013; Fridman, 2004; Tendero, Tixier, Tristant,
Desmaison, & Leprince, 2006). As plasma mixtures can be avail-
able at a wide range of temperatures, scientists categorized plasma
mixtures into two groups, namely thermal and nonthermal (cold)
plasma (Niemira & Gutsol, 2011). While the term “nonthermal
plasma” is defined by physicists as a plasma that has a clearly
nonuniform (nonequilibrium) distribution of energy among its
components and the electrons may transfer energy through colli-
sions with heavier particles and change their status into the reac-
tivity state (Niemira & Gutsol, 2011), food scientists describe this
term as plasma gases that neither induce thermal damage to the
product nor rely on high temperatures for food processing such
as food decontamination (Bhat et al., 2002; Gavahian & Mousavi
Khaneghah, 2019). The direct application of the thermal plasma in
the food industry is probably not feasible as it operates at extremely
high temperatures that may deteriorate many food components.
On the other hand, the nonthermal plasma was claimed to be
a potential alternative to many traditional processes in the food
industry (Gavahian, Chu, Mousavi Khaneghah, Barba, & Misra,
2018; Misra & Jo, 2017). Cold plasma can affect microorganisms
and food components through ultraviolet (UV) radiations and
chemical interactions (for example, between reactive species and
food components). All of these mechanisms are usually involved in
the nonthermal plasma process at the same time, resulting in a great

Vol.18,2019 * Comprehensive ReviewsinFood Scienceand FoodSafety 1293



Cold plasma for the poultry industry...

Vaccine
preparation

Meat
decontamination

Figure 1-A summary of prospective applications of cold plasma in the poultry industry.

impact on food and cell components (Bhat, Lee, VanVollenhoven,
Teng, & Bieber 2002).

Nonthermal plasma can be generated using several energy
sources and under different conditions. Electricity, microwaves,
and laser are among the common energy sources for plasma gen-
eration (Szabé & Schlabach, 2014). The plasma energy can also
be generated under atmospheric or negative pressure (Niemira &
Gutsol, 2011). Besides, cold plasma can be generated through var-
ious discharging systems including radio-frequency (which uses
pulsed electrical current to produce plasma inside an electrical
coil), glow (which has two electrodes at both sides of a separating
area that contains a special gas composition), and barrier (which
produces the plasma energy by distributing the electrical current
through dielectric material) (Szabé & Schlabach, 2014). Detailed
discussions on the designs of plasma systems can be found in the
literature (Szabd & Schlabach, 2014; Thirumdas et al., 2018). To
this date, a number of plasma-generating systems, including plasma
jets (Kim et al., 2013; Lee et al., 2011), corona discharges (Do-
brynin, Friedman, Fridman, & Starikovskiy, 2011), and dielectric
barrier discharges (DBD) (Georgescu, 2015; Lee et al., 2016), have
been used for treatment of food materials such as poultry prod-
ucts (Thirumdas et al., 2018). Furthermore, the application of
plasma activated water, that is, plasma-treated water that contains
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a number of reactive species, has been explored for inactivation of
pathogens associated with chicken (Thirumdas et al., 2018).

Nonthermal Plasma and Poultry Industry

Recent studies have proposed cold plasma as a tool to enhance
the production yield in chicken farms, through vaccine produc-
tion, growth and reproduction enhancement (Wang; et al., 2016;
Zhang et al., 2017; Zhang, Do, et al., 2018; Zhang, Huynh,
et al., 2018; Zhang, Wang, et al., 2018), and to assure the safety
of the poultry products (Aly, 2013; Apostol et al., 2015; Dirks
et al., 2012; Georgescu et al., 2017; Lee et al., 2011, 2012, 2016;
Ragni et al., 2010; Rossow et al., 2018; Wang et al., 2018; Yong
et al., 2014; Figure 1). This wide range of potential application is
because of the presence of reactive species and photons and the
consequent chemical reactions that these components may induce
in the treated product.

A previously conducted microbiological study confirmed the
decontamination effects of DBD plasma against common poultry
product-associated pathogenic (S. enterica, S. Typhimurium, and
C. jejuni) and spoilage (Pseudomonas fluorescens) bacteria (Rothrock
et al., 2017). This study also revealed that different bacteria have
different survival rates under the same plasma treatments. For
example, 0.5 and 2 min of nonthermal plasma treatment resulted
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Figure 2—A historical overview of the recent development in the application of cold plasma for poultry product decontamination.

in a significant inactivation (60% inactivation) and completely in-
activated of C. jejuni., respectively On the other hand, the same
nonthermal process slightly inactivated S. Typhimurium and P
fluorescens (less than 20% inactivation). According to the authors,
significant inactivation (60% inactivation) of these microorganisms
required 3 min of plasma treatment. However, this study only eval-
uated the decontamination effects of cold plasma on pure liquid
cultures. Therefore, the results of this study might be different
from that of the industrial decontamination of poultry products
wherein the microorganisms are mainly located on the chicken
skin or eggshell with special topography and different chemical
composition (for example, different protein, fat, and moisture lev-
els). Therefore, food scientist assessed the decontamination effects
of cold plasma on chicken meat (Dirks et al., 2012; Lee et al.,
2011; Myers et al., 2016; Noriega, Shama, Laca, Diaz, & Kong,
2011; Rossow et al., 2018; Wang et al., 2016, 2018; Yong et al.,
2014) and egg (Apostol et al., 2015; Georgescu et al., 2017; Lee
et al., 2012; Ragni et al., 2010; Wan, Chen, Pankaj, & Keener,
2017; Figure 2).

Chicken meat and skin decontamination

Several studies have explored the feasibility of chicken meat
and skin decontamination by nonthermal plasma (Table 1). Lee
et al. (2011) assessed the effects of 2 min of jet plasma treatment
on the cooked chicken breast that was contaminated by Listeria
monocytogenes (Lee et al., 2011). They used He, N, He4O5, and
He+N, as carrier gases and observed that these plasma treatments
decreased the bacteria population by 1.37 to 4.73 log units, de-
pending on the types of carrier gas. According to the paper, the
mixture of nitrogen and oxygen was the most effective carrier gas
against the studied microorganism.

The atmospheric pressure jet treatments of chicken breast for
5 and 10 min reduced the S. Typhimurium from 5.66 to 5.14
and 4.41 log CFU/g, respectively (Kim et al., 2013). The authors
also pointed out that the treatment distance, that is, the distance
between the plasma generation point and chicken sample, can
affect the effectiveness of the nonthermal decontamination. For
example, 10 min plasma treatment of the chicken meat with the
initial S. Typhimurium population of 8.25 resulted in a product
with the S. Typhimurium concentration of 4.86, 4.48, and 5.87
log CFU/g when the treatment distance was 1, 2, and 3 c¢m, re-
spectively. The authors concluded that the optimization of plasma

© 2019 Institute of Food Technologists®

treatment in terms of working distance and treatment time can
enhance its decontamination effects on chicken breast.

Noriega et al. (2011) reported that greater values of the in-
put voltage and frequency and higher concentrations of oxygen
in the working gas enhanced the decontamination effects of the
plasma treatment on chicken meat and chicken skin that were
inoculated with Listeria innocua (Noriega et al.,, 2011). Accord-
ing to the paper, 8 min treatment proffered 1 log reduction of
the Listeria in the chicken skin and a 4 min treatment resulted
in about 3 log reductions in chicken meat. They used scanning
electron microscopy (SEM) to investigate the surface topography
of the chicken meat and skin and figured out that the eftectiveness
of nonthermal plasma can be influenced by the surface topogra-
phy as some surface features, such as cracks or feather follicles,
can protect microorganisms from the reactive species generated
during nonthermal plasma treatment. It was also reported that
some microorganisms can migrate from the surface of the chicken
skin to the interior parts (up to 0.15 mm depths; Noriega et al.,
2011). This fact along with the nonuniform topography of the
chicken skin may increase the survival rate of the microorganism
following the nonthermal plasma treatment. According to Nor-
iega et al. (2011), the highly irregular topography of the skin
enables microorganisms to be drawn through capillary action into
surface irregularities, such as the feather follicles, which may in-
crease their resistance against nonthermal plasma treatment. The
red arrows show the bacteria cluster that remained on the skin
surface. It seems that the rest of the inoculated bacteria penetrated
into the cracks and other nonuniform structures of the skin.

Dirks et al. (2012) confirmed the decontamination effects of
the atmospheric air DBD plasma on chicken breast and chicken
thigh that were contaminated by antibiotic-resistant strains of the
C. jejuni and S. enterica (Dirks et al., 2012). Nonthermal plasma
treatment eliminated 10 CFU of'S. enterica and C. jejuni on chicken
breasts. A similar decontamination effect was observed on inoc-
ulated C. jejuni in the chicken thigh samples. However, 20 s of
nonthermal plasma treatment did not inactivate the S. enterica on
the chicken thigh. This research revealed that the type of treated
sample can affect the decontamination level of plasma treatment.
It seems that the inoculated bacteria on the chicken leg were more
resistance than the ones on chicken breast. This could be related to
the effect of surface texture and topography (Noriega et al., 2011)
and the potential protective effect of lipid molecules (Gavahian,
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Chu, Mousavi Khaneghah, Barba, & Misra, 2018) in the chicken
thigh due to the different chemical composition.

Likewise, Lee et al. (2016) reported that 10 min of DBD plasma
treatment of chicken breast reduced the population of total aerobic
bacteria, E. coli, S. Typhimurium, and L. monocytogenes by 3.36,
2.73,2.71, and 2.14 Log CFU/g, respectively (Figure 3).

An investigation on the effects of atmospheric pressure jet plasma
on the microbiological quality of the sliced chicken revealed that
this nonthermal process improved the microbiological safety of
the product (Aly, 2013). According to the paper, increasing the
treatment time resulted in a further decrease in the total count of
the product. Thirty and 90 s of nonthermal plasma process reduced
the total count of the sliced chicken from 5.6 x 10% to 2.9 x 10?
and 1.9 x 10% CFU/g, respectively. This study highlighted the
importance of treatment time on the microbiological safety of the
sliced chicken.

Wang, Zhuang, Lawrence, and Zhang (2018) studied the effects
of plasma treatment time on the microbiological characteristics
of the chicken fillets and reported that increasing the treatment
time did not significantly affect the psychrophiles and mesophiles
population on the chicken fillets and all the treatment times (70
W nonthermal plasma for 3, 6, and 9 min) resulted in about 1 to
1.5 log CFU/gram reduction in the population of these microor-
ganisms (Wang et al., 2018). Ozone is one of the most important
components in nonthermal plasma process that has antimicrobial
activity and the higher concentration of this chemical can re-
sult in a better decontamination effect of plasma on the product
(Gavahian, Chu, Mousavi Khaneghah et al., 2018). According to
Wang et al. (2018), the concentration of ozone did not increase
significantly after increasing the plasma treatment time from 3 min
to 6 and 9 min and were 950, 950, and 1,000 ppm, respectively
(Wang et al., 2018). Therefore, increasing the plasma exposure
time did not increase the concentration of ozone. Consequently,
these treatment times yielded chicken fillets with similar micro-
biological quality. Similar results were observed for increasing the
input power. These findings showed that the excessive increase
of the input power and treatment time could be ineffective in
enhancing the microbiological safety of the chicken. Therefore,
optimization of the plasma process in terms of process time and
input power can result in faster and energy saving plasma treat-
ment with similar decontamination effects to the longer or higher
power ones.

The decontamination effects of the jet plasma on chicken breast
fillet and chicken skin were evaluated by Rossow et al. (2018).
They inoculated C. jejuni on the surface of these two poultry
products and assessed the applicability of nonthermal plasma at
atmospheric pressure using different working gases (air or ar-
gon), different treatment times (0.5, 1, 2, or 3 min), and dif-
ferent distances between samples and the plasma source (0.5,
0.8, or 1.2cm). The greatest decontamination effect was achieved
when argon was the working gas and the treatment was con-
tinued for a long time (3 min). The authors suggested that ad-
justing process parameters can enhance the efficacy of the non-
thermal plasma process (Rossow et al., 2018). However, all the
studied plasma treatment conditions decreased the microbial load
of the chicken skin and chicken fillet. According to the pa-
per, the reduction in Campylobacter population following plasma
treatment fluctuated between 0.65 and 1.42 or 0.78 and 2.55
log CFU/cm? when air or argon was used as the working gas,
respectively. Therefore, the authors suggested the nonthermal
plasma as an effective disinfection technique for chicken fillet and
chicken skin due to its effectiveness against C. jejuni (Rossow

© 2019 Institute of Food Technologists®

et al., 2018), which can be transmitted to human mainly through
poultry products and lead to food infections (Wieczorek et al.,
2018).

Lee et al. (2016) reported that DBD plasma treatment success-
fully decreased the number of total aerobic bacteria and pathogens
in the vacuum packaged chicken breasts (Lee et al., 2016). Ac-
cording to the authors, 10 min DBD plasma treatment of the
samples reduced the number of total aerobic bacteria, E. coli, S.
Typhimurium, and L. monocytogenes by 3.36, 2.73, 2.71, and 2.14
Log CFU/g, respectively. The authors did not observe any viable
aerobic bacteria after 10 min of the nonthermal plasma process.
Furthermore, increasing the treatment time enhanced the decon-
tamination effects of plasma against all the studied microorganisms.

A recent study highlighted the effectiveness of DBD plasma
against psychrophiles, Campylobacter, and Salmonella (Zhuang et al.,
2019). Furthermore, jet plasma was proved to be an effective tool
for inactivation of Escherichia coli inoculated on the surface of fresh
chicken breasts (Yong et al., 2014). This research team investigated
the optimum conditions for the arc plasma treatment of the studied
samples to maximize the inactivation of Escherichia coli and con-
cluded that several parameters, including the type of carrier gas,
the distance between samples and the plasma source, treatment
duration, and the initial concentration of the pathogen, affect the
efficacy of the nonthermal process.

Wang et al. (2016) assessed the effect of 3 min of plasma treat-
ment at the input voltage of 80 kV on the microbiological shelf-life
of the fillets of chicken breast that were packaged under atmo-
spheric or modified atmosphere (oxygen, carbon dioxide, nitro-
gen ratio of 65, 30, and 5, respectively) conditions (Wang et al.,
2016). The authors did not observe any significant differences
between the microbial count of control and plasma-treated sam-
ples packed under the atmospheric air condition. On the other
hand, the microbial count of modified atmosphere packaged fil-
lets was lower that of the control sample. The authors assumed
that the decontamination effects of nonthermal plasma on pack-
aged chicken fillets depend on the composition of the filled gas
inside the packages. The results of this study showed that the
combination of modified atmosphere packaging and nonthermal
plasma treatment can extend the microbiological shelf-life of re-
frigerated chicken fillet from 1 to 2 weeks (Wang et al., 2016). In
an interesting study, the effect of plasma process parameters on the
inactivation rate of Salmonella inoculated on chicken breast model
was investigated (Roh, Lee, Park, Lee, & Min, 2019). According
to the authors, whey protein coating enhanced the Salmonella in-
activation rate. In addition, the authors observed an increase in
the D-value (from 0.2 to 1.3 min) by increasing the initial inocu-
lum concentration (from 3.8 to 5.7 log CFU). These authors also
reported that the composition of the chicken model system, that
is, fat, water, and protein content, affected the efficacy of plasma
treatment in Salmonella inactivation.

Egg decontamination

Raw and cooked egg decontamination by nonthermal plasma
has recently attracted the attention of several researchers (Table 2).
While a study conducted in the last decade showed that 5 min
treatment of eggshell with plasma-generated gas (ionized air) was
ineffective against S. Enteritidis (Davies & Breslin, 2003), recent
investigations confirmed the decontaminations effects of nonther-
mal plasma on the egg surface (Apostol et al., 2015; Georgescu
etal., 2017; Lee et al., 2012; Ragni et al., 2010; Wan et al., 2017).

The decontamination effects of 2 min of plasma jet treatment
at the input voltage of 2 kV against L. monocytogenes inoculated
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Figure 3-The effects of plasma treatment on the Salmonella count and the lightness of chicken breast samples according to the findings of Lee et al.

(2016).

into the steam cooked egg yolk and egg white were confirmed
by Lee et al. (2012). According to the authors, the optimization
of the carrier gas composition can enhance the decontamination
effects of the plasma jet. Using helium as the carrier gas decreased
the population of the inoculated microorganism by 5 Log CFU
in the cooked egg white, whereas replacing this gas with oxygen—
nitrogen mixture boosted the decontamination efficacy of this
process and reduced the Listeria counts by 6.7 Log CFU (Lee
etal., 2012). In addition, this investigation showed that the rate of
bacteria inactivation depends on the type of processed material as
different results were reported for egg white and egg yolk under
the same treatment conditions. This study highlighted the impor-
tance of process optimization, such as working gas composition, to
enhance the decontamination eftects of nonthermal plasma. The
paper also highlighted the importance of selecting the appropri-
ate food materials for plasma treatment as the results showed that
both decontamination rate and quality attributes changes depend
on the type of raw material (Lee et al., 2012). Similarly, Apostol
et al. (2015) assessed the bactericide effects of jet plasma on the
eggshells contaminated with S. enterica. According to the paper, 5
min of nonthermal plasma at the 20 kV amplitude inactivated all
the available bacteria on the eggshell (Apostol et al., 2015).

Wan, Chen, Pankaj, and Keener (2017) explored the feasibility
of S. Enteritidis deactivation by direct and indirect nonthermal
plasma for eggshells. The study revealed that the decontamination
efficiency depends on the carrier gas composition, treatment du-
ration, and exposure mode, that is, direct or indirect plasma treat-
ment. According to the results, the direct application of plasma
was more effective than the indirect mode for Salmonella inac-
tivation and 15 min of the direct and indirect plasma treatment
under modified atmospheric conditions (65% oxygen, 30% car-
bon dioxide, and 5% nitrogen) reduced the Salmonella count by
about 6.4 and 4.3 log cycles, respectively (Wan et al., 2017). It
was previously proved that the UV radiation, charged particles,
and short half-life species, such as O, N;, OH™, and N,O™, re-
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combine before reaching the sample and only reactive species with
longer half-lives, such as O,, O3, NO, NO,, and CO, can interact
with the sample in indirect plasma mode. On the other hand, all
the above-mentioned components are in direct contact with the
sample when plasma applied directly to the sample (Misra, Yadav,
Roopesh, & Jo, 2019, Misra, Zuizina, Cullen, & Keener, 2013). A
greater bactericidal effect can be expected in the extended plasma
exposure times due to the increased concentrations of reactive
species, such as ozone, and also because of subjecting microor-
ganisms to reactive species for a longer period of time. Regarding
the carrier gas composition, higher concentrations of oxygen re-
sulted in a greater decontamination effect that was attributed to
the generation of higher concentrations of reactive oxygen species.
The results also demonstrated that increasing the carbon dioxide
concentration in the gas mixture enhanced the decontamination
effects of the plasma due to the generation of higher concentrations
of carbon monoxide. Both carbon monoxide and carbon dioxide
were reported to inhibit the growth of microorganisms and in-
tensify the bactericidal effect of plasma (Chiper, Chen, Mejlholm,
Dalgaard, & Stamate, 2011).

Georgescu (2015) proposed two DBD plasma-based systems
for egg decontamination, namely direct and indirect nonthermal
plasma. The egg was directly immersed into the helium—oxygen
plasma in the proposed direct system. On the other hand, the pro-
duced plasma passed over the eggs that were placed outside the
plasma volume in the indirect system. The author measured the
ozone concentration, which is one of the major bactericidal agents
of the nonthermal plasma, to explore the effectiveness of the pro-
posed systems. According to the paper, the concentration of this
bactericidal agent reached to about 2,500 and 500 ppm after 5 min
of optimized direct and indirect plasma application, respectively.
The author pointed out that the concentration of the generated
ozone in the direct system depends on the oxygen concentration
and applied voltage while the surface area of high-voltage elec-
trode and chamber volume are also important parameters in the
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indirect system. The author claimed that the concentration of the
generated ozone in the direct system, that is, 2,500 ppm, provides
the desired level of egg decontamination. However, microbiologi-
cal studies are necessary to verify the effectiveness of the proposed
system against egg contaminants (Georgescu, 2015). In a simi-
lar study, Georgescu, Apostol, and Gherendi (2017) assessed the
inactivation of S. enterica on eggshell by direct (eggs were in di-
rect contact with produced plasma gas) and indirect (eggs located
outside the plasma generation area) DBD plasma treatments at the
input voltage of 25 to 30 kV and frequency of 10 to 12 kHz.
The carrier gases were air and a mixture of helium—oxygen in the
indirect and direct systems, respectively. This study highlighted
the importance of gas composition in the direct mode of plasma
treatment. According to the authors, incorporating 1% oxygen
into the pure helium (as the carrier gas), enhanced the decontam-
ination effects of direct plasma treatment and deactivated 99% of
Salmonella cells on the eggshell (Georgescu et al., 2017). On the
other hand, 6 min of direct plasma treatment with pure helium
gas did not affect the CFU values of the egg surface. The role
of oxygen, as the carrier gas, in enhancing the decontamination
effect of nonthermal plasma previously discussed in the literature
(Misra et al., 2013). The conducted study by Georgescu et al.
(2017) also highlighted the importance of the relative humidity
(RH) of the carrier gas for the indirect plasma decontamination
of hen eggs (Georgescu et al., 2017). According to the paper, sub-
jecting the contaminated eggs (initial Salmonella concentration of
8.04 Log CFU/egg) to a 20 min indirect plasma treatment using
stationary ambient air (with RH of 40%) and humid synthetic air
(with RH of 80%) resulted in a product with the bacteria count of
5.35 and 2.64 Log CFU/egg, respectively. Other researchers pre-
viously explained the importance of the presence of appropriate
concentrations of water molecules in the carrier gas (Dobrynin
et al., 2011; Guo, Huang, & Wang, 2015).

The study conducted by Ragni et al. (2010) also highlighted
the importance of selecting the appropriate treatment time and
moisture content for nonthermal decontamination of hen eggs.
The authors explored the applicability of glow atmospheric gas
plasma at the input voltage of 15 kV against S. Enteritidis and
S. Typhimurium inoculated on the eggshell and observed that
extending the process time enhanced the decontamination effects
of plasma (Ragni et al., 2010). Similarly, the results showed that
operating the glow plasma at higher moisture content (RH of
65% instead of 35%) resulted in a greater decrease in S. Enteritidis
population (reduction value of 4.5 log CFU/eggshell compared
with 2.5 Log CFU/eggshell, respectively).

Davies and Breslin (2003) applied the plasma activated air to
disinfect the surfaces of contaminated eggs with S. Enteritidis.
According to the authors, subjecting the eggs to the plasma gas for
5 min did not enhance the microbiological safety of the eggs and
15 min of exposure to the same gas only decreased the number
of contaminated eggs by 10% (from 38% contaminated control
eggs to 28% contaminated 20-min plasma treated egg; Davies &
Breslin, 2003). This finding disagrees with several reports that con-
firmed the effectiveness of plasma activated air (indirect plasma)
against egg concerning flora (Apostol et al., 2015; Georgescu et al.,
2017; Lee et al., 2012; Ragni et al., 2010; Wan et al., 2017). In
the conducted study by Davies and Breslin (2003), the gas plasma
was generated in an isolated tube and was pumped into a cabinet
that held contaminated eggs. It seems that pumping the plasma-
activated air for a long distance provided the required time for
recombination and inactivation of several reactive species with a
short half-life (Misra et al., 2013). Therefore, the eggs were prob-
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ably in contact with limited reactive components as compared to
the direct plasma treatment. Moreover, the concentration of reac-
tive species in the generated plasma air depends on the volume of
the cabinet that kept the egg for plasma treatment as the higher
volume of the cabinet can be translated to the higher dilution
of the plasma components. Furthermore, all the egg surface (the
whole egg) were assessed for microbial decontamination by Davies
and Breslin (2003) but in many studies, which confirmed the de-
contamination effects of plasma, only the part of the shell that
was in direct contact with plasma investigated for microbiological
tests (Georgescu et al., 2017). Finally, extending the plasma expo-
sure time may result in a greater decontamination effect of plasma
treatment (Wan et al., 2017) as longer process times enhanced the
effectiveness of plasma gas application from 0% to 10% in their
study. Therefore, a similar study with optimized conditions may
result in a higher percentage of decontaminated eggs after indirect
plasma treatment.

Effects on the Quality Parameters of Poultry Products

Most of the available processes in the poultry and food industries
can affect product quality parameters such as its physical, nutri-
tional, and sensory attributes. These changes are also inevitable in
many emerging techniques including nonthermal plasma. Unde-
sirable changes in the quality attributes of poultry products, such
as their appearance and color, can affect the consumer acceptabil-
ity (Samant et al., 2015). Research revealed that plasma treated
products may experience color changes (Lee et al., 2016; Ragni
etal., 2010), lipid oxidation (Gavahian, Chu, Mousavi Khaneghah,
et al., 2018; Lee et al., 2012), and sensory quality deterioration
(Aly, 2013; Lee et al., 2016).

Quality attributes of the plasma-treated eggs

External egg quality. Wan et al. (2017) reported that 15 min
of glow plasma treatment of egg at the input voltage of 85 kV
did not alter the external quality parameters of egg such as egg
weight (Wan et al., 2017). A similar observation was made when
chicken eggs were subjected to afterglow corona discharge air
plasma for 12 hr (Puligundla, Choi, & Mok, 2016). On the other
hand, Ragni et al. (2010) evaluated the effect of resistive barrier
discharge plasma on the eggshell quality and reported that this de-
contamination process slightly altered the color of the eggshell and
increased the greenness of the disinfected product (Ragni et al.,
2010). According to the scanning electron microscope analysis,
both cuticle and the inner surface of the internal shell mem-
brane were not affected by this plasma treatment. This could be
considered as a promising result as the cuticle is the first defensive
structure of the egg against microorganisms and any damage to this
layer can shorten the shelf-life of the egg (Messens, Grijspeerdt, &
Herman, 2005). Similar results were reported by Georgescu et al.
(2017) regarding the nonthermal processed eggs with good cuticle
coverage. The results from the micrographs indicated that direct
and indirect plasma processes did not destroy the cuticle structure
as compared to the control sample.

Internal egg quality. The previously conducted studies showed
that plasma treatment usually did not alter the pH of eggs (Lee
et al., 2012; Puligundla et al., 2016; Ragni et al., 2010). Besides,
it was reported that Haugh unit, vitelline membrane strength,
and yolk color of untreated egg samples were similar to those
of the eggs that were subjected to 85 kV glow plasma for
15 min (Wan et al., 2017). Likewise, Puligundla, Choi, and Mok
(2016) studied the effects of a 20-kV afterglow corona discharge
air plasma on some internal quality of chicken eggs and reported
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that yolk index and Haugh units of the plasma-treated eggs were
similar to those of untreated (control) samples (Puligundla et al.,
2016). Similarly, Ragni et al. (2010) showed that resistive barrier
discharge plasma treatment did not affect the yolk index. (Ragni
etal., 2010). Lee et al. (2012) studied the effects of a plasma treat-
ment (2 kV micro atmospheric pressure plasma jet for 2 min) on
some quality parameters of cooked egg white and egg yolks. Ac-
cording to the authors, plasma treatment reduced the lightness (L*
value) of both egg yolk and egg white but did not affect a* and
b* values of the studied samples. These authors also showed that
TBARS value of the plasma-treated samples were similar to those
of the untreated samples. They also reported that the sensory qual-
ity of the plasma-treated egg white was similar to that of untreated
samples (Lee et al., 2012). Likewise, Puligundla et al. (2016) re-
ported that 12 hr of afterglow plasma treatment did not alter the
sensory attributes (for example, appearance, texture, flavor, and
aroma) of the chicken eggs (Puligundla et al., 2016). On the other
hand, the plasma treatment changed the sensory attributes, such as
taste, flavor, and overall acceptability, of the cooked egg yolk (Lee
et al., 2012).

Quality attributes of the plasma-treated poultry meat
products

Color and appearance. Wang, Zhuang, Hinton, and Zhang
(2016) applied DBD plasma on the chicken fillet and observed
no significant changes in the lightness of the treated sample for
3 min at the input voltage of 80 kV (Wang et al., 2016). Likewise,
Wang et al. (2018) reported that the color values of the plasma-
treated chicken fillets (9 min at the input voltage of 80 kV) were
the same as the untreated sample (Wang et al., 2018). On the other
hand, it was reported that DBD plasma treatment of chicken breast
resulted in a meat product with a greener color (Lee et al. 2016).
It is hypothesized that this type of discoloration can be induced
by the conversion of myoglobin into other compounds including
choleglobin, sulphmyoglobin, verdoheme, nitrimyoglobin, and ni-
trihemin (Yong et al., 2018). In a similar manner, Lee et al. (2016)
reported that L* and b* values of chicken breast increased follow-
ing 10 min of jet plasma treatment (Lee et al., 2016; Figure 3). On
the other hand, this nonthermal process resulted in a product with
a reduced a* value as compared to the control sample. Similar re-
sults, that is, no significant change in the a* and b* but an increase
in the L* value, were reported when chicken breast samples were
treated by DBD plasma (Zhuang et al., 2019).

It was reported that 3 min of jet plasma treatment did not
affect the AL* values of chicken breast and chicken skin samples
using argon as the carrier gas when the working distance was
12 mm distance (Rossow et al., 2018). However, decreasing the
working distance from 12 to 8 mm increased the AL* value of
the chicken breast by about 3 units. The authors mentioned that
this change was visible as a slight centric brightening. According
to the paper, dehydration and denaturation of meat proteins could
be the possible reasons for this change in the product lightness
as plasma treated samples experienced higher temperatures (about
45 °C) than the control samples (refrigerated samples). On the
other hand, the same plasma treatment did not alter the chicken
skin lightness as lower protein content and the lighter color of
skin resulted in the reduced and concealed changes through the
protein denaturation, respectively. The authors also showed that
a* and b* values of the plasma-treated samples were similar to that
of the control sample (Rossow et al., 2018). A research conducted
by Lee et al. (2012) showed that 10 min of atmospheric pressure
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jet plasma decreased the lightness of both cooked egg yolk and egg
white (Lee et al., 2012).

Sensory attributes. Aly (2013) showed that jet plasma treatment
did not negatively affect the sensory properties of sliced chicken
and the plasma-treated samples had the similar appearance, flavor,
and texture to that of the control (no plasma treatment) sample
(Aly, 2013). On the other hand, it was reported that nonthermal
plasma treatment can induce unpleasant flavors in the chicken
breast (Lee et al., 2016). According to the author, the plasma-
treated chicken breast had a less intensity of pleasant chicken flavor
and higher intensity of an unpleasant flavor. However, the sensory
evaluation results implied that the sensory acceptability of this
product was similar to that of the untreated (control) sample.

Lipid Oxidation. A limited number of reports have been pub-
lished on the plasma-induced lipid oxidation in the poultry meat
products. For example, Lee et al. (2016) reported that 10 min of
nonthermal plasma treatment did not induce lipid oxidation in the
chicken breast (Lee et al., 2016). However, it is necessary to mon-
itor this deteriorative chemical reaction when high-fat content
food materials, such as chicken skin, are treated by cold plasma

(Gavahian, Chu, Mousavi Khaneghah, et al., 2018).

Considerations and Limitations

Despite numerous proposed applications of nonthermal plasma
in the poultry industry, including chicken and egg decontamina-
tion, this technology is still in its infancy and its limitations should
be considered and addressed prior to its commercialization. Safety
validation of the product and process by regulatory bodies are a key
consideration for many of its prospective applications in the poultry
industry. Especially, the genotoxicity safety of the decontaminated
egg and chicken meat should be confirmed by the legislative bod-
ies. Fortunately, some research tried to address this concern such
as Lee et al. (2012), and Lee et al. (2016). However, further com-
prehensive evaluations can facilitate the commercialization of this
technique in the poultry industry.

Besides, the potential negative effects of plasma treatment on the
quality attributes should be considered (Muhammad et al., 2018).
While the unpleasant physical changes may only affect the con-
sumer acceptability and result in the economic loss, the chemical
changes, such as lipid oxidation, may lead to both economic loss
and production of health-concerned products (Gavahian, Chu,
Mousavi Khaneghah, et al., 2018). Fortunately, a number of pre-
viously conducted research showed these negative changes can be
minimized by the optimization of process parameters, including
the input power, carrier gas composition, and process time. In
addition, selecting the appropriate raw materials and especially
avoiding treatment of high-fat content products, such as egg yolk
(Lee et al., 2012) and chicken skin (Rossow et al., 2018), should
be taken into account to minimize unpleasant chemical reactions.
These precautions could be combined with selecting appropriate
carrier gas composition to limit the oxidation reactions (Gavahian,
Chu, Mousavi Khaneghah, et al., 2018). Incorporation of antiox-
idant compounds (for example, essential oils) is also suggested as a
technique to reduce the possibility of lipid oxidation during plasma
treatment (Gavahian, Chu, & Sastry, 2018; Gavahian, Hashemi,
Mousavi Khaneghah, & Mazaheri Tehrani, 2013; Lorenzo et al.,
2018).

Regarding product decontamination by nonthermal plasma, it
should be noted that the nonuniform surface of some poultry
products, such as chicken skin or whole chicken, can enhance
the survival rate of microorganisms and reduce the efficacy of
the process. Besides, the uniformity and the penetration depth
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of the plasma are important considerations. Appropriate process
design, process parameters optimization, and appropriate selection
and preparation of the raw materials may address these concerns.
Furthermore, the challenges involved in continuous process design
may prevent several farmers and food processors from replacing the
conventional methods with novel nonthermal plasma unless en-
gineers and researchers can develop affordable continuous plasma
equipment. Overall, there are some limitations for commercial
application of cold plasma in the poultry industry at this moment
that can be overcome after further research and technological de-
velopment.

Future Trends and Research Needs

Further research may explore the optimizations of plasma con-
ditions to maximize its beneficial effects (for example, the decon-
tamination efficiency), and to minimize its potential deteriorative
effects on the treated product including plasma-induced lipid ox-
idation (Gavahian, Chu, Mousavi Khaneghah, et al., 2018), un-
pleasant flavor (Lee et al., 2016), and color changes (Lee et al.,
2016; Rossow et al., 2018). In addition, the previously conducted
studies showed that employing various types of plasma technology
(for example, DBD, glow, or arc) for various types of poultry prod-
ucts (for example, eggshell, chicken meat, or chicken skin) can re-
sult in different degrees of decontamination (Figure 4). Therefore,
selecting the appropriate equipment for processing each product
can be explored in future studies to improve the current under-
standing of the appropriateness of the available plasma technologies
for poultry products processing.

In addition, further chemical and genotoxicity studies of the
plasma-treated poultry products can be suggested. As one of the
rare examples, Aly (2013) showed that jet plasma treatment did not
introduce any undesirable change in the chemical composition of
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sliced chicken. Lee et al. (2012) reported that a plasma-treated
chicken breast passed genotoxicological safety assessment using
the Ames test. The genotoxicological safety of this nonthermal
process was also confirmed for chicken breast in another study
(Lee et al., 2016). Similar information and officially approved re-
ports are prerequisites for the endorsement of regulatory bodies
and industrial adoption of this emerging technology in the poul-
try industry. Furthermore, the safety of the operator of plasma
equipment and the potential negative impacts of subjecting to free
radicals and reactive species necessitate comprehensive physiologi-
cal and oncological studies on this topic along with required safety
precautions.

The future advancements and commercial applications of non-
thermal plasma in the poultry industry are associated with the
available process design knowledge, industrial equipment, their
cost and effectiveness, and the importance of the drawbacks of the
conventional technique that needed to be addressed by the new
process. Upscaling studies are also necessary to comply with the
high-capacity poultry production lines of many factories. Replac-
ing the conventional production lines with plasma-based equip-
ment might be disregarded unless the researchers can design ef-
fective and low-price plasma equipment, explore its benefits, and
minimize associated challenges. A good effort regarding the con-
tinuous plasma treatment of fresh produce has been recently done
(Ziuzina et al., 2016). However, more comprehensive efforts re-
lated to poultry products are also required. Furthermore, con-
siderations in process design, such as hygienic design, should be
taken into account in the future commercial design of nonthermal
plasma.

Moreover, combining nonthermal plasma with other preserva-
tion technique can be considered in future studies. For example,
decontamination of the poultry products along with appropriate
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packaging techniques or in combination with suitable essential
oil may enhance the product shelf-life and reduce the potential
negative effects of plasma on product quality. It was previously
reported that the antimicrobial and antioxidant effects of essential
oils, as natural additives, may enhance the effectiveness of non-
thermal processes, such as plasma, and reduce the required process
intensity (Gavahian & Farahnaky, 2018; Gavahian, Chu, & Sastry,
2018; Lorenzo et al., 2018).

Finally, the potential applications of plasma-activated water in
the poultry industry might also be an interesting topic for future
research. It was reported that plasma-activated water can be ef-
fective against some of the major spoilage bacteria of the poultry
products (Xiang, Kang, Niu, Zhao, & Li, 2004) but its effective-
ness on poultry products and its effect on the product quality and
safety should also be investigated.

Conclusions

Nonthermal plasma treatment has attracted the attention of
food scientists because of its prospective benefits in enhancing
the safety of poultry products. Academic research has so far re-
vealed that this technique can be used for decontamination of
chicken eggs and meat. Future research may reveal more poten-
tial applications of cold plasma for poultry products. Previously
published reports introduced cold plasma as a promising tool for
enhancing the microbiological safety of poultry products. In this
regard, process optimization (for example, appropriate treatment
time) is a crucial consideration. On the other hand, it should be
noted that the uncontrolled plasma treatment may negatively affect
the quality parameters of the product which should be considered
in the commercial process design. Furthermore, the unavailability
of high-capacity plasma equipment that can be applied to poul-
try products is among the obstacles for the successful commercial
application of this emerging technique. Food and machinery engi-
neers are also expected to develop appropriately upscaled and con-
tinuous plasma-based equipment with reasonable prices through
prospective comprehensive studies in this area. From the current
state of the research and published literature, we believe that fu-
ture investigations may address these required steps for successful
commercialization of nonthermal plasma in the poultry industry.
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CFU colony-forming unit
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MAP modified atmosphere packaged

MLR maximum log reduction
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PAW plasma activated water

PT process time

PV pressure value

RH relative humidity

SEM scanning electron microscopy

TBARS 2-thiobarbituric acid reactive substances
uv ultraviolet

\Y voltage
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